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Abstract

Many aspects of macroevolutionary theory and our understanding of biotic

responses to global environmental change derive from literature-based

compilations of paleontological data. Existing manually assembled databases are,

however, incomplete and difficult to assess and enhance with new data types.

Here, we develop and validate the quality of a machine reading system,

PaleoDeepDive, that automatically locates and extracts data from heterogeneous

text, tables, and figures in publications. PaleoDeepDive performs comparably to

humans in several complex data extraction and inference tasks and generates

congruent synthetic results that describe the geological history of taxonomic

diversity and genus-level rates of origination and extinction. Unlike traditional

databases, PaleoDeepDive produces a probabilistic database that systematically

improves as information is added. We show that the system can readily

accommodate sophisticated data types, such as morphological data in biological

illustrations and associated textual descriptions. Our machine reading approach to

scientific data integration and synthesis brings within reach many questions that are

currently underdetermined and does so in ways that may stimulate entirely new

modes of inquiry.

Introduction

Paleontology is based on the description and classification of fossils, an enterprise

that has played out in an untold number of scientific publications. The

construction of synthetic databases that aggregate fossil data in a way that enables

large-scale questions to be addressed has expanded the intellectual reach of

paleontology [1–5] and led to fundamental new insights into macroevolutionary
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processes (e.g., [6–9]) and the timing and nature of biotic responses to global

environmental change (e.g., [10,11]). Nevertheless, paleontologists often remain

data limited, both in terms of the pace of discovery and description of new fossils

and in terms of their ability to synthesize existing published knowledge on the

fossil record. Many other sciences, particularly those for which physical samples

and specimens are the source of data, face similar challenges.

One of the most successful efforts to compile data on the fossil record to date is

the Paleobiology Database (PBDB; http://paleobiodb.org). Founded nearly two

decades ago by a small team who generated the first sampling-standardized global

Phanerozoic taxonomic diversity curves [12,13], the PBDB has since grown to

include an international group of more than 380 scientists with diverse research

agendas. Collectively, this group has spent approximately nine continuous person

years entering over 300,000 taxonomic names, 530,000 opinions on the status and

classification of those names, and 1.2 million fossil occurrences (i.e., temporally

and geographically resolved instances of fossils). Some data derive from the

original fieldwork and taxonomic studies of the contributors, but the majority of

the data were extracted from approximately 40,000 publications. Nevertheless, the

PBDB currently leverages only a small fraction of all published paleontological

knowledge, primarily because there is a large and ever-growing body of published

work and manually finding and entering data is a labor intensive and often

ambiguous task. Moreover, because the end product of manual data entry is a list

of facts that are divorced from most, if not all, original contexts, assessing the

quality of the database and the reproducibility of results is difficult.

Here we develop and deploy PaleoDeepDive (PDD), a statistical machine

reading and learning system, to automatically find and extract fossil occurrence

data from the scientific literature. Our motivations for doing so are threefold.

First, we aim to test the reproducibility of several key results that are used to frame

much of our understanding of the large-scale history of life, including long-term

taxonomic diversity and rates of genus-level extinction and origination [1–13].

Second, we aim to improve upon the state of the art in machine reading systems,

which have not been deployed and validated in a result-focused scientific

application. Third, we aim to develop a general machine reading system that has

the capacity to change the practice of science by removing substantial time and

cost barriers to large-scale data integration and synthesis. In so doing, we hope to

shift the balance of effort away from slow and expensive data compilation efforts

and towards creative hypothesis testing and the more focused and efficient

generation of new primary field- and specimen-based data.

The specific question that motivates this study is: Can the data produced by a

machine reading system achieve a quality that is sufficient to enable literature

synthesis-based science? We address this question by pitting our system’s results

against those of human-constructed databases at several levels of granularity, from

individual facts that describe opinions on the biological classification of taxa to

synthetic results that summarize the history of genus-level biodiversity over

millions of years. In all cases, we show that PDD produces data with quality that is

comparable to that generated by humans, even when only small amounts of
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training data are available. We also test the ability of our system to lower the cost

of extending a human-constructed database by extracting data from an order of

magnitude more references. The results of this experiment show that our system is

efficiently scalable and that key macroevolutionary patterns are robust even when

derived from different bodies of literature. We further test the ability of our

system to incorporate new types of information by extracting morphological data

from biological illustrations and their labels, captions, and associated text. Our

machine-derived body size estimates are statistically indistinguishable from those

produced by humans manually measuring the same illustrations. Because we are

focused here on the validation and testing of a new machine reading system, the

specific data types and approaches we take are based on many of those taken by

humans when building and analyzing the Paleobiology Database. Our system is,

nonetheless, designed for broad applicability in the biological and physical

sciences, and it can be readily extended for knowledge base creation in many

different domains of Earth and life science.

Materials and Methods: General Description

Overview

A fundamental challenge faced by machine reading systems is that computers

cannot read documents unambiguously. Instead, machines have difficulty with all

aspects of document reading, from optical character recognition (OCR) and

natural language understanding tasks, to the more complex subtleties involving

domain-specific representations of fact. As a result, coping with ambiguity is a key

challenge in many areas of computer science [14–18].

To accommodate the inherent ambiguity of the scientific literature, PDD is

built upon the DeepDive machine reading infrastructure [18], which is designed

to extract information in a way that achieves a deep level of contextual

understanding. To do this, DeepDive takes a radical approach: it treats all sources

of information, including existing data, as evidence that may or may not be

correct. Extraction tasks then become probabilistic inference challenges. DeepDive

takes a joint or collective probabilistic approach [19], in which all available

information is considered simultaneously. This is in contrast to a pipelined

approach [17,20,21], in which hard decisions are made after each stage of

document processing, which can result in compounding errors and suboptimal

data quality [22]. DeepDive is also able to accept diverse forms of feedback,

including example data sources, formal rules, and training data.

Similar conceptual underpinnings are currently in use by Google’s Knowledge

Graph, IBM’s Watson, and CMU’s NELL project. However, none of these have

demonstrated an ability to extract information collectively from text, tables, and

figures, which is critical to meeting the standards and questions posed by scientific

uses. The cost of taking a collective probabilistic approach is that complexity

grows exponentially with each new source of ambiguity. Recent work, in part

motivated by this study, allows us to perform the requisite statistical inference

Machine-Compiled Fossil Database

PLOS ONE | DOI:10.1371/journal.pone.0113523 December 1, 2014 3 / 22



tasks orders of magnitude more efficiently than was possible just a few years ago

[23–27].

PaleoDeepDive Pipeline

The input to PaleoDeepDive is a set of documents (e.g., PDFs or HTML), and a

database structure that defines entities (i.e., unique instances of specific types of

information, such as a specific taxon, time interval, or geological formation) and

relationships of interest (i.e., associations between one or more entities). The first

step in the DeepDive process is to perform document parsing, including optical

character recognition (OCR), document layout recognition, and natural language

processing (NLP) of the text (Fig. 1; Figs. S1–S3 in File S1). These steps are

required before applying any of the reasoning necessary to recognize entities and

the relationships among them. An example of the latter is: ‘‘Does this instance of

the word ‘Waldron’ refer to the ‘Waldron Shale’, a distinct geological formation,

and if so, what is its stated geologic age, where is it located geographically, and

which species are reported from it?’’ Descriptions of how to recognize entities and

the relationships among them can be articulated by scientists through rules and

examples, which form the basis for specific relational features (e.g., parts of

speech, such as ‘‘the Waldron Formation is Silurian in age’’) that link two or more

entities (Fig. 1; Tables S1, S2 in File S1). The weights of these rules are then

estimated (i.e., learned) from the data using classical equations based on

exponential models [19]. Essentially, the likelihood of the given set of

observations (data and rules) is maximized, given the set of features expressed by

the rules (Fig. 1).

The end-product of PDD is not a classical database, which consists of isolated

facts that are all assumed to be equally correct. Instead, DeepDive produces a

probabilistic database in which each fact remains tightly coupled to its original

context and is associated with an estimated probability of being correct [28]. A

probabilistic approach is not a panacea, but it does allow our system to cope with

ambiguity in a principled and consistent way. This is critical for scientists, who

can use these probabilities to identify errors and omissions and thereby improve

the quality of the system. For further explanation, application code, and example

data output see our online documentation (http://deepdive.stanford.edu/doc/

paleo.html).

Materials and Methods: Extended Description

System

Features that relate facts in PDD are encoded in a relational database. These

features derive from two sources: a set of functions written in the DeepDive

framework and a set of existing tools developed by other researchers, including

Tesseract and Cuneiform for text, Abbyy Fine Reader for tables, and
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StanfordCoreNLP for linguistic context. The list of features and rules used in this

version of PDD are summarized in Tables S1 and S2 in File S1.

After extracting features in documents, the next step is to generate a factor

graph (Fig. 1; Fig. S3 in File S1), which is a compact way of specifying exponential

family probability models [19,29]. The factor graph is defined by a hypergraph (V,

E) where V is a set of random variables and E(2V define groups of variables

(factors) that are correlated. In addition, each random variable is associated with a

domain (for simplicity, consider a Boolean random variable). Each factor (edge)

e5(v1,.., vk) is associated with a scalar function called a potential (weight)

Qe: {0, 1}kRR. For example, the 2-tuple (Tsingyuan Fm, Namurian) represents an

ordered pair (i.e., a tuple as defined in set theory) and corresponds to a random

variable in DeepDive. This variable assumes the value 1 if true, 0 if false. To

specify a correlation, for example, if (Tsingyuan Fm, Carboniferous) is true, then

it is likely that (Tsingyuan Fm, Namurian) is also true (because the Carboniferous

Figure 1. Schematic representation of the PaleoDeepDive workflow. PDF documents (upper left) are subject to Optical Character Recognition (OCR),
Natural Language Processing (NLP), table recognition and other third-party software applications that parse and identify document elements. Entities (in this
example, geological formations and geographic locations) are identified and related to one another by features (e.g., parts of speech, locations in table),
which are recognized and extracted by SQL queries and scripts (e.g., written in Python). Factor graphs are then constructed for entities and possible
relationships among them. DeepDive estimates the weight of features based on their expressions in the data. The final step is reporting, which includes
explicit probability estimates for each relationship and calibration reports, which can be used to evaluate and improve the system in an iterative fashion.

doi:10.1371/journal.pone.0113523.g001
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contains the Namurian), a factor can be encoded to relate the two variables. This

factor is only a statistical implication; PDD will estimate the strength of this

implication on the data.

The factor graph in PDD can be conceived of as existing in three layers (Fig. 1).

The first layer corresponds to the set of entities detected as individual mentions in

documents. The second layer corresponds to a set of relation candidates between

mentions, and the third layer corresponds to a set of relation candidates between

distinct entities. One can think of the second layer as a per document layer and the

third layer as the ‘‘aggregation’’ across all documents. Conceptualization of these

layers is useful for software engineering reasons, but the statistical apparatus uses

information from all layers simultaneously at the inference and learning stages.

Given a factor graph generated by feature extraction, PDD next learns the

weight for each factor and then runs inference tasks to estimate the probability of

each random variable. One key challenge of machine reading approaches is how to

generate training data (i.e., a set of random variables that have been assessed for

accuracy and that contain positive and/or negative examples). Traditional

approaches include human expert annotation of results and crowd-sourcing [30].

The human-constructed PBDB allows PDD to make extensive use of a

generalization of Hearst patterns called distant supervision [31,32]. This approach

to training has considerable potential in the natural sciences because even simple

lists of facts, such as the location and general geological age of rock formations,

can be used in distant supervision to improve the quality of data extractions and

more complex inferences.

Factor graphs are a convenient way to define random variables and their

correlations, but they can be large. In PDD, the factor graph contains more than

200 million random variables and 300 million factors with 12 million distinct

weights (Table S9 in File S1). PDD uses recent research in both theory [23,24] and

systems [25] to address this computational challenge. Further details are given the

Supplementary Information.

Documents

The serial publications used in the Overlapping Document Set (OverlappingDS)

and Whole Document set (WholeDS) are provided in Tables S3 and S8 in File S1.

Some of the serials in the top-50 PBDB sources were not accessible to us online.

We were also not able to able to recover all references in the listed in the PBDB,

regardless of the general online accessibility to the source. This discrepancy is due

to incomplete bibliographic information in the human database, which is

currently keyed in manually and sometimes in incomplete form (Tables S10, S11

in File S1), and OCR and NLP document processing failures (see Assessment,

below). To match retrieved documents to specific PBDB references we first used

the TokenSet Cosine similarity approach [33] and then created an Amazon

Mechanical Turk job, in which 64 distinct human workers combined for 30,182

evaluations of the matches. To obtain the WholeDS, we extended the

Machine-Compiled Fossil Database

PLOS ONE | DOI:10.1371/journal.pone.0113523 December 1, 2014 6 / 22



OverlappingDS to include all available documents in the top-50 serials in the

PBDB; we also included the whole open access Biodiversity Heritage Library.

Features

All PDD feature extraction tasks that use existing tools were run on Condor and

the Open Science Grid (OSG). Ghostscript was run to convert each document

into a set of png images. This step is necessary because our approach uses both the

content of text and the information conveyed by the detailed formatting and

layout of elements within and adjacent to that text (e.g., font, justification, figure

elements etc.). Next, OCR tools were executed. Each tool was permitted to run for

24 hours on a document before timeout occurred; a failed document was re-

deployed on the OSG up to 10 times before being removed from the set.

Document failures were caused by kernels older than 2006 and incompatible

software on individual OSG machines, as well as document-specific software bugs,

such as segmentation faults in Cuneiform caused by unusual document

formatting. All tools had a failure rate of less than 8%, but these errors are

orthogonal to our work; future improvements to OCR and NLP tools will

improve the quality of PDD.

The WholeDS contains 23 times more documents than the OverlappingDS, and

the number of variables extracted from them scales approximately linearly. The

number of distinct features is, however, only 13 times greater because features can

be shared across documents (Table S12 in File S1). Distinct taxa are only 10 times

more numerous in the WholeDS because many taxa are referred to in more than

one document. The number of occurrences is only six times greater in the

WholeDS, reflecting the fact that most of the additional documents we were able

to access are taxonomically-focused and do not contain fossil occurrence data;

some documents also derive from serials, such as USGS Open-File Reports, that

are interdisciplinary, with only a minority of documents that are relevant to

paleontology.

Extensions

We extended PDD to include data extraction from German and Chinese language

documents. The named entity recognition component of PDD has dictionary-

based features and NLP-based features. Relevant language-specific dictionaries

were built manually and from external sources such as geonames.org. For NLP-

based features, the Stanford CoreNLP provides models for Chinese and German.

For document layout-based features, there is no change in function with language.

We also extended PDD to extract body size from biological illustrations, which

requires processing images, linking image part labels to captions, and mapping

captions to text in order to extract all of the necessary information (Fig. S9, S10 in

File S1). Further explanation of tools and methods used for joint image-text

analysis is presented in the Supplementary Information.
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Results

Overlapping Document Set (OverlappingDS)

To quantitatively assess PDD’s ability to read the literature and extract structured

fossil occurrence data, we used the human-constructed PBDB as a baseline for

comparison. Specifically, 11,782 documents from the top-50 serial publications in

the PBDB were also processed by PDD (the OverlappingDS; Table S3 in File S1;

File S2). This experiment allows comparisons to be made between human readers

and our system at multiple levels of granularity. Because PDD depends on

linguistic understanding, at this time our system is able to process only English,

German, and Chinese language documents, which constitute 76%, 6%, and 2%,

respectively, of PBDB’s total reference inventory. Additional languages will be

added to the system as new NLP and OCR software for processing these languages

become available.

On average, PDD extracts more taxonomic data from a document than

humans. For example, humans extracted 79,913 opinions on the status and

biological classification of taxonomic names from the OverlappingDS, whereas

PDD extracts 192,365 opinions. Although many of these opinions are relatively

simple cases that are often not entered by humans (e.g., a species belongs to a

genus), they nonetheless constitute taxonomic information which is sometimes

not entered by humans at all. For example, PDD extracted 59,996 taxonomic

names from the OverlappingDS that were never formally entered by human

readers from any of the over 40,000 references they have entered thus far. A

random sample of these names indicates that most are valid species-level taxa and

that >90% were correctly extracted (Table S4 in File S1). The cases where PDD

fails to recognize and extract data from a document are due primarily to OCR-

related errors (Tables S5, S6 in File S1), which are orthogonal to this work.

The quality of PDD’s database was assessed in three ways. The first uses

DeepDive’s pipeline, which produces internal measures of precision for every

entity and relationship. All of the extractions used here have a precision of >95%

according to this criterion (like all p-value thresholds, the decision to use 95% is

arbitrary). We also conducted blind assessment experiments of two types. In the

first double blind experiment, we randomly sampled 100 taxonomic opinions

from the PBDB and PDD and then randomized the combined 200 opinions into a

single list. This list was then manually assessed for accuracy relative to the source

document. In this assessment, PDD achieved >92% accuracy in all cases, which is

greater than or equal to the accuracy estimated for the human data (Table S7 in

File S1). In the second blind experiment, eight scientists with different levels of

investment in the PBDB were presented with the same five documents and the

same 481 randomly selected taxonomic opinions, which were extracted by both

humans and PDD (Fig. S4 in File S1). No indication was given regarding which

system generated the facts. Humans measured a mean error frequency in the

machine-constructed database of 10%, with a standard deviation of ¡6%. This is

comparable to the error rate of 14¡5% they estimated for those same documents

in the human-constructed database (Fig. S5 in File S1). Variability in estimates
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between annotators reflects a combination of assessment error and divergent

interpretations of what constitutes a taxonomic opinion in the literature.

Although the blind experiments suggest that the error rate is comparable between

the databases, the comparisons are not strictly equivalent. For example, PDD

currently understands only nested hierarchical relationships (i.e., genus a belongs

to family b) and synonymy (genus a is a junior synonym of genus b), which

comprise a large fraction (90% and 5%, respectively) but not all of the taxonomic

opinions in the PBDB (other opinions include nomen dubia, nomen nuda, and

other formal opinions on nomenclatural status defined by the International Codes

of nomenclature, namely the ICZN and IAPT). Another reason that our results

are not strictly comparable is that human data enterers often selectively enter only

the data that they deem to be important or non-redundant with data in other

documents. This selectivity occurs primarily because the manual data entry

process is time consuming, which causes decisions to be made on the basis of

necessity, not exhaustiveness.

The third approach we took to assessing PDD quality was conducted at the

aggregate level of Phanerozoic patterns of taxonomic diversity and rates of genus-

level taxonomic turnover [34]. After processing both databases with the same

algorithms to generate a working taxonomy and a list of occurrences meeting the

same threshold of temporal resolution (i.e., epoch or finer), we find good overall

agreement in results (Fig. 2; data are binned into the same 52 time intervals, mean

duration 10.4 Myr). Both long-term trends and interval-to-interval changes in

genus-level diversity and turnover rates are strongly positively correlated,

indicating that both databases capture the same underlying signal. The number of

genus-level occurrences in each time interval, which is important to sampling

standardization approaches [35,36], are also positively correlated (for time series

that have been detrended by taking first differences, Spearman rho50.65;

p55.761027). The times of first and last occurrence of 6,708 taxonomically and

temporally resolved genera common to both database are also consistent

statistically, although there are large range offsets owing to errors in both the

human- and machine-generated databases (Fig. 3).

Differences between results (Fig. 2) can be attributed to a combination of errors

and inconsistencies in the human-constructed database, as well as to data recovery

and inference errors committed by PDD. For example, the PBDB contains

typographical errors introduced during data entry. But, most of the differences

observed in Fig. 2 are attributable to more insidious inconsistencies. For example,

there are groups of occurrences in the PBDB that derive from multiple

documents, even though only one document is cited as their source. Thus, the

actual number of references used to generate the PDD results is larger than that

used by PDD. Occurrences in the PBDB are also sometimes attributed to a

reference that actually contains no data but that instead cites the PBDB or some

other archive that we did not access as its data source. A much more common

source of discrepancy involves the injection of facts and interpretations by

humans during the data entry process. Notably, approximately 50% of the ages

assigned to fossil occurrences in the human database are not actually mentioned
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Figure 2. Machine- and human-generated histories of taxonomic diversity and rates of genus-level
turnover. Data derive from reading of the overlapping document set. Human-generated in red, machine-
generated in black. Spearman rank order correlations for time series that have been detrended by taking first
differences shown. (a) Per capita, per interval origination rates [34]. (b) Per capita, per interval extinction
rates. (c) Total range-through diversity. Data for analyses accessible in File S3.

doi:10.1371/journal.pone.0113523.g002
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in the cited reference (Fig. S6 in File S1). Although problematic in some senses,

this is well justified scientifically. The stated age for an occurrence in a document

is often not the best available age, and the PBDB has no capacity to dynamically

assign ages based on all evidence. Humans attempt to account for these structural

limitations in the database by entering what they determine, on the basis of other

evidence, to be the best age for a fossil occurrence in a document. PDD replicated

aspects of this behavior by inferring across all documents the most precise and

recently published age for a given geological unit and location, but this is not

sufficient to cover the full range of sources consulted by humans. Thus, a

disproportionate number of the occurrences extracted by PDD have a temporal

resolution that results in their exclusion from the quantities shown in Fig. 2 (e.g.,

geological period-level). Including occurrences with low temporal resolution

Figure 3. Genus range offsets in human and machine-generated data. Results for 6,708 genera common
to the PBDB and PDD in the OverlappingDS are shown. (a) Last occurrence differences. Median is 0 Myr,
mean is +1.7 Myr. (b) First occurrence offset. Median is 0 Myr, mean is 20.3 Myr. Data for analyses
accessible in File S4.

doi:10.1371/journal.pone.0113523.g003
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causes the absolute values of the human- and machine-generated diversity curves

to converge (Fig. S7 in File S1).

Errors and limitations in the current PDD system also account for divergence in

results (Fig. 2). For example, OCR-related document processing failures, often

involving tables, are among the leading causes of errors of omission by PDD

(Table S6 in File S1). The current version of PDD also has design elements that

cause some facts to be omitted. For example, PDD currently places great

importance on formal geologic units, which means that no fossil occurrences are

recognized in references that do not have well defined geologic units. Because this

situation is more prevalent in recent time intervals, the lower total diversity

recovered by PDD towards the recent (Fig. 2) is attributable to this design

decision. Omissions also occur when a fact is correctly extracted by PDD, but with

a probability ,0.95, the arbitrarily chosen probability threshold used here. This

type of confidence-related error can typically be overcome by defining new

features or rules, such as natural language expressions, that can be used to remove

sources of ambiguity and improve statistical confidence in correct extractions.

The results from the OverlappingDS experiment demonstrate that our system

performs comparably to humans in many complex data extraction and inference

tasks and that patterns of taxonomic diversity and genus-level taxonomic

turnover are similarly expressed in both databases. This is an important result that

demonstrates the robustness of widely-used macroevolutionary results and that

addresses several long-standing challenges in computer science. However, it is also

the case that these specific quantities, which are based on large numbers of taxa,

are often robust to random errors introduced at the level of individual facts [37–

39]. Thus, our results (Fig. 2) could be interpreted as evidence for the presence of

a strong signal in the paleontological literature that is readily recovered, regardless

of approach. The rather narrow distribution of range offsets on a per-genus basis

(Fig. 3), however, suggests that PDD’s precision is high even at the scale of

individual facts. Note, however, that for many questions requiring that lineage

first and last occurrences are known with the highest possible precision, there is

still discrepancy between PDD and the human database (Fig. 3).

Training Data Requirements

We used the human-constructed PBDB as both a source of training data and as a

benchmark for evaluation. Therefore, an obvious question is, how big would the

human database have to be in order for there to be sufficient training data to

obtain a high quality result?

To assess the effect of training data volume on the quality of PDD, we randomly

sampled the human database to produce a series of smaller databases. We then re-

ran the entire PDD system in exactly the same way, but using only the subsampled

data for training purposes. As expected, both the amount of data extracted by

PDD (with a probability >0.95) and the accuracy of those data, summarized as

the Spearman rank-order correlation between first differences in genus-level

diversity (Fig. 2c), increases with the amount of training data. However, rather
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little training data is required in order to achieve a similarly high-quality result

(Fig. 4). If the PBDB were populated with just 2% of the total number of

references entered by humans over nearly two decades, there would be sufficient

training data to obtain a comparable result.

Additional Assessment

The OverlappingDS was randomly and evenly split into a training set and a testing

set. Fifty documents in the testing set were then randomly sampled for assessment

by human annotators, primarily graduate students in the Dept. of Geoscience at

UW-Madison. Assessments included taxonomic, stratigraphic, chronologic, and

geographic tuples. PDD achieves >92% human-estimated accuracy in all relations

(Table S13 in File S1), which is close to the 95% confidence threshold specified for

data output.

The number of facts recovered vs. the number of facts contained in a document

(i.e., recall) is more difficult to assess than the precision of the data that are

extracted. Because each extracted relationship consists of a paired object and

subject (e.g., the object ‘‘formation’’ contains a subject ‘‘taxon’’), one basic

measure of recall is the fraction of all subjects in the PBDB that PDD also

recovered. This estimate of recall ranges from 21% to 69%, depending on relation

(Table S13 in File S1). For the lowest recall relations, we randomly sampled 10

documents in order to compare the PBDB and PDD. We did so for a combination

of three binary relations (taxon,formation)(formation,temporal)(formation,loca-

tion). When summarizing this 4-part tuple by projecting these relationships to

Figure 4. Effect of changing PBDB training database size on PDD quality. Spearman rho is correlation
between human- and machine- generated time series of diversity, as in Fig. 2c. Tuples refers to the number of
human-constructed relationships between entities (i.e., the Waldron Formation is Silurian in age) that were
used for distant supervision. References refers to the number of individual published papers that were read
and processed by human and then used for distant supervision. Each curve was generated by subsampling to
the specified number of human-processed references and tuples used for distant supervision.

doi:10.1371/journal.pone.0113523.g004

Machine-Compiled Fossil Database

PLOS ONE | DOI:10.1371/journal.pone.0113523 December 1, 2014 13 / 22



taxon, approximately 18% of PDDs extractions also appear in PBDB and 11% of

PBDB extractions also appear in PDD. This implies that both PDD and PBDB

make recall errors, but that both systems also have high precision.

Further examination of PDD recall errors (Table S6 in File S1) shows that they

can be attributed to OCR-related failures (56%), table recognition problems

(29%), and lack of context features that are required to address the full range of

often complicated expressions in the literature (15%). All of these errors

correspond to interesting and open-problems for computer science. The first two

are related to data acquisition (i.e., how to correctly recognize the structure and

content of a given document), and the latter is an important natural language

inference problem (i.e., how to extract relations by taking advantage of

information in the whole document). Continued work in these areas will further

improve the PDD system, which we have shown is now capable of meeting, and in

some cases exceeding, human standards in its ability to produce a synthetic

database resource with scientific value. For additional technical validation of the

system, including an explanation of the calibration of probabilities in the database

(Figs. S11, S12 in File S1) and the impact of including rich features on overall

system quality (Figs. S13, S14 in File S1), see the Supplementary Information.

Whole Document Set (WholeDS)

Scaling PDD up to extract data from every relevant published document poses

little technical challenge [40] and would offer a statistical advantage that could

improve the overall quality of our system. However, access to the scientific

literature for the purpose of automated text and data mining is currently limited

[41]. Thus, PDD’s entire document set now consists of only 294,463 documents

(Table S8 in File S1). Notably for this study, many of these documents were

obtained from the open-access Biodiversity Heritage Library, which contains a

large number of valuable but also older and taxonomically-focused publications

that lack fossil occurrence data used to generate Figs. 2 and 5.

Despite limitations on our ability to access much of the relevant paleontological

literature, the PDD-generated Phanerozoic diversity curve for the WholeDS

(Fig. 5) yields a face-value empirical genus diversity history that is consistent with

classical estimates [3,4]. First differences in Phanerozoic diversity extracted from

the WholeDS are also positively correlated with first differences in diversity for the

whole PBDB (Table 1). Genus-level rates of extinction and origination are also

similar in both compilations (for first differences, p,0.0004). The diversity

histories of major groups of organisms comprising this total diversity are also

positively correlated (Table 1), even though fewer than 25% of the references in

the PBDB were read and processed by PDD (a total of 22,250 valid genera with

resolved stratigraphic ranges are common to both compilations).
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Discussion

The results of our validation study have three important implications. First, we

have demonstrated that our machine reading system is capable of building a

structured database from the heterogeneous scientific literature with quality that

is comparable to a database produced by humans manually reading and extracting

data (at least in the dimensions addressed here). This is notable because current

benchmarks in machine reading and knowledge base construction, such as the

Text Analysis Conference Knowledge Base Population competition, achieve less

than 50% accuracy (albeit in the broader domain of general web text). Second, we

have tested at a large scale the reproducibility of the PBDB, and in so doing we

have identified sources of error and inconsistency that have a bearing on the use of

Figure 5. Machine-generated Phanerozoic diversity curves. Genus-level diversity generated by PDD for
the whole document set. (a) Total genus diversity calculated as in Fig. 2. For comparison, Sepkoski’s genus-
level diversity curve [3,4] is plotted using his stage-level timescale. (b), Diversity partitioned by genera
resolved to select classes by PDD. Data for analyses accessible in File S5.

doi:10.1371/journal.pone.0113523.g005
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the database. However, we have also shown that key macroevolutionary results are

robust to these types of errors. Third, we have shown more broadly that literature-

based macroevolutionary patterns are similarly expressed even when they derive

from different bodies of literature. This indicates that the paleontological

literature, and presumably the underlying fossil record that it has sampled,

contains a strong macroevolutionary signal that is readily recovered. This does not

mean that our understanding of the global fossil record is uniformly complete

taxonomically, temporally, or spatially (Fig. S8 in File S1), that our understanding

of the true history of global biodiversity is accurate [12,13,42,43], or even that the

literature contains accurate data for every clade (e.g., [39]). It is also the case that

the PBDB, our analysis, and many paleobiological analyses to date, have focused

on the operational units of Linnean taxonomy, which in some cases yield results

that are inconsistent with those that also incorporate phylogenetic approaches and

hypotheses (e.g., [44–46]).

The ability to expand existing databases and to more rapidly create new high

quality synthetic data resources is a notable advance in the methodological toolkit

of scientists. However, a much greater advantage of our approach is that the type

of database that it produces is fundamentally different from manually populated

databases. In the probabilistic database [28] produced by PDD, every fact is

associated with an estimated probability of being correct and each fact remains

tightly coupled to its original context. Thus, the quality of the entire database can

be improved systematically whenever feedback is given on any one component or

when additional rules or data is added to the system. More importantly, PDD’s

data acquisition process is based on the visual and textual analysis of entire

documents. Our system is, therefore, able to recognize and extract data that are

not currently part of a database but that are contextually related.

For example, the illustration of specimens is central to biological systematics

and there are millions of biological illustrations in the WholeDS. Body size, a

Table 1. Correlations between human- and machine-generated genus diversity.

Taxonomic group Spearman rho P-value

All genera 0.72 3.661029

Bivalvia 0.67 6.261028

Bryozoa 0.64 3.661027

Gastropoda 0.59 5.361026

Anthozoa 0.53 6.661025

Brachiopoda 0.52 0.0001

Reptilia 0.50 0.0002

Trilobita 0.49 0.0003

Cephalopoda 0.41 0.003

Mammalia 0.40 0.004

Crinoidea 0.39 0.004

Data derive from the whole document set and the entire PBDB. Spearman rank-order correlation coefficients
and p-values for detrended diversity time series (from Fig. 5b) shown.

doi:10.1371/journal.pone.0113523.t001
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fundamental property of organisms that determines many aspects of their ecology

(e.g., [47]), is one of the morphological attributes readily conveyed by illustrations

and their associated text. Several studies have examined the evolution of body size

in individual lineages (e.g., [6,48–50]), but, similar to the PBDB, all efforts to

manually compile body size data cover only a small portion of the literature and

yield monolithic databases that are difficult to assess and extend with new data.

To test the ability of our machine reading and learning system to incorporate

data in illustrations, we extended PDD to identify images of biological specimens,

locate and measure their major and minor axes, and read associated figure labels,

captions, and text in order to determine magnification, the portion of the

organism being imaged, and taxonomy (see Supplementary Information). The

PDD-estimated body sizes for classified brachiopod genera are congruent with

body sizes estimated for those same genera by the manual measurement of images

(Fig. 6). Leveraging PDD’s capacity to quantitatively analyze the entire body of

published biological illustrations, in the context of their full textual descriptions,

will enable new approaches to biological systematics and morphometrics and

brings within reach questions that require a combination of morphological,

geologic, and taxonomic data. Before PDD can be deployed to leverage this new

capability, the current barriers to automated access and processing of published

scientific documents must be overcome. These barriers include the outright

prohibition of automated accessing and processing of documents for any purpose,

even in cases where the originating institution has paid for online subscriptions,

and publisher-imposed limitations on what can and cannot be done with the data

that are extracted by machine reading approaches [41]. In those cases where

permission is not required because documents are open access, programmatically

Figure 6. Machine- and human-generated body size estimates. A total of 1,014 brachiopod genera are
shown. PDD, gray bars; human estimate, red line. Distributions not significantly different according to paired
Mann-Whitney U-test (p50.18) and Kruskal-Wallis test (p50.64).

doi:10.1371/journal.pone.0113523.g006
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accessing large numbers of journals typically requires writing customized scripts

for each source, which may decide to change accessibility protocols; there are also

few standards adhered to between publishers, which adds complexity to the

process of accessing digital publications en masse.

Although we have focused here on validating PDD and on testing the

robustness of literature-derived taxonomic diversity and turnover patterns in a

widely used human-constructed database, our approach is built upon on a general

machine reading and learning system [18] that can be readily adapted for many

different domain-specific data extraction and inference tasks. For example, many

paleobiologists and biologists expect phylogenetic approaches to replace many of

the analyses that have traditionally been based on Linnean taxonomic units [44–

46]. Nevertheless, our machine reading system could be modified to accom-

modate different data types, including character data and phylogenetic hypotheses

(i.e., the results in cladograms and other unranked cladistic summaries of inferred

evolutionary relationships). Thus, the specific choice of data focused on here is

less important than the fact that we have demonstrated the ability to extract those

data with high quality. We have also shown that voluminous training data are not

necessarily required to achieve high quality results, though it is always the case

that more data will improve statistical inference and overall recall and precision.

Thus, many questions that have been posed before, but that have been deemed too

difficult to address without prohibitively time consuming data compilation

efforts, are now coming within reach. Perhaps more importantly, our approach to

data synthesis yields a probabilistic database that remains tightly coupled to

primary sources, that continually improves with the addition of new information,

and that is capable of integrating complex data in ways that are may stimulate

entirely new modes of inquiry.

Supporting Information

File S1. Figure S1 in File S1 Schematic representation of the PDD workflow.

Figure S2 in File S1 Overview of PDD feature extraction. Text, tables, and

images in an original document are parsed (e.g., by table position extraction or

natural language). Two or more entities and the specific properties in the

document (i.e., features) that relate them are expressed as a row in a database.

Figure S3 in File S1 Overview of factor graph component of PDD. Existing

knowledge bases, such as data in the PBDB, are used to assess mention-level

relations during distant supervision. Variables assessed for accuracy become

evidence variables for statistical inference and learning steps. Figure S4 in File S1

Screen shot of web user interface used in blind experiment conducted by 7

human annotators. A unique link and instructions to complete the form were

emailed to each participant, along with written instructions describing the nature

of the task. Figure S5 in File S1 Summary of results of annotation experiment of

PDD and PBDB taxonomic extractions. Human volunteers with varying levels of

professional investment in the PDD were asked to assess a mixture of human- and
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machine-extracted data. Figure S6 in File S1 Summary of results of annotation

experiment of occurrence data. Human volunteers were asked to assess human-

generated occurrence data in the PDD. Although no indication was given as to the

source of the data, many of the annotators assumed that they were evaluating

machine-generated data. Figure S7 in File S1 PDD genus-level diversity (black

curve) calculated using occurrences with period level or finer temporal

resolution. The results in this figure can be compared to the epoch or finer

temporal resolution used to generate the results in Fig. 2c. Figure S8 in File S1

Geographic distribution of occurrences in PDD-generated database.

Geographic coordinates were extracted for each fossil occurrence extracted by

PDD, primarily by identifying location entities linked to geological formations

that are also in open georeferenced libraries. Figure S9 in File S1 Image

processing component for body size extraction. Figure S10 in File S1 Relation

extraction component for body size extraction. Figure S11 in File S1

Calibration plots for all relations in OverlappingDS. Figure S12 in File S1

Calibration plots for all relations in WholeDS. Figure S13 in File S1 Lesion

study of deep NLP features and table recognition. Here we show the results of

removing specific components used in recognizing features. Figure S14 in File S1

Lesion study of joint inference. Here we explore the quantitative effects of

disabling specific joint inference capabilities. Table S1 in File S1 List of features

and rules used in the current version of PDD. Finding the right simple features

and rules can be difficult. The PDD system is designed to operate in an iterative

fashion, with error analysis occurring after each round of feature and rule

definition. Table S2 in File S1 List of distant supervision rules used in PDD.

Table S3 in File S1 Distribution of documents in the OverlappingDS. Table S4

in File S1 Error Analysis of taxon entity extractions in PDD. Table S5 in File S1

Error analysis of all PDD extractions. Table S6 in File S1 Error analysis of all

PBDB extractions. Table S7 in File S1 Comparison of Accuracies of PDD and

PBDB. Table S8 in File S1 Statistics for WholeDS. Table S9 in File S1 Factor

graph statistics in the overlapping and whole document sets. Table S10 in File

S1 Random sample and assessment of PBDB journal articles from the Journal
of Vertebrate Paleontology not appearing in the OverlappingDS. Table S11 in

File S1 Random sample and assessment of PBDB journal articles from the

Science not appearing in the OverlappingDS. Table S12 in File S1 Extraction

statistics for the OverlappingDS and WholeDS. Table S13 in File S1 Statistics

of PDD annotations and quality score for each relation.

doi:10.1371/journal.pone.0113523.s001 (PDF)

File S2. Comma separated value file of fossil occurrences extracted by PDD for

OverlappingDS.

doi:10.1371/journal.pone.0113523.s002 (CSV)

File S3. Comma separated value file of raw data used in PDD-PBDB taxonomic

diversity analyses in OverlappingDS.

doi:10.1371/journal.pone.0113523.s003 (CSV)
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File S4. Comma separated value file of raw data used in PDD-PBDB genus

range offset analyses.

doi:10.1371/journal.pone.0113523.s004 (CSV)

File S5. Comma separated value file of raw data used in PDD-PBDB taxonomic

diversity analyses in WholeDS.

doi:10.1371/journal.pone.0113523.s005 (CSV)
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